| Routine Name |
Mark of Introduction |
Purpose |
| D02AGF Example Text |
2 | ODEs, boundary value problem, shooting and matching technique, allowing interior matching point, general parameters to be determined |
| D02BGF Example Text |
7 | ODEs, IVP, Runge–Kutta–Merson method, until a component attains given value (simple driver) |
| D02BHF Example Text |
7 | ODEs, IVP, Runge–Kutta–Merson method, until function of solution is zero (simple driver) |
| D02BJF Example Text |
18 | ODEs, IVP, Runge–Kutta method, until function of solution is zero, integration over range with intermediate output (simple driver) |
| D02CJF Example Text |
13 | ODEs, IVP, Adams method, until function of solution is zero, intermediate output (simple driver) |
| D02EJF Example Text |
12 | ODEs, stiff IVP, BDF method, until function of solution is zero, intermediate output (simple driver) |
| D02GAF Example Text |
8 | ODEs, boundary value problem, finite difference technique with deferred correction, simple nonlinear problem |
| D02GBF Example Text |
8 | ODEs, boundary value problem, finite difference technique with deferred correction, general linear problem |
| D02HAF Example Text |
8 | ODEs, boundary value problem, shooting and matching, boundary values to be determined |
| D02HBF Example Text |
8 | ODEs, boundary value problem, shooting and matching, general parameters to be determined |
| D02JAF Example Text |
8 | ODEs, boundary value problem, collocation and least-squares, single nth-order linear equation |
| D02JBF Example Text |
8 | ODEs, boundary value problem, collocation and least-squares, system of first-order linear equations |
| D02KAF Example Text |
7 | Second-order Sturm–Liouville problem, regular system, finite range, eigenvalue only |
| D02KDF Example Text |
7 | Second-order Sturm–Liouville problem, regular/singular system, finite/infinite range, eigenvalue only, user-specified break-points |
| D02KEF Example Text |
8 | Second-order Sturm–Liouville problem, regular/singular system, finite/infinite range, eigenvalue and eigenfunction, user-specified break-points |
| D02LAF Example Text |
13 | Second-order ODEs, IVP, Runge–Kutta–Nystrom method |
| D02LXF | 13 | Second-order ODEs, IVP, setup for D02LAF |
| D02LYF | 13 | Second-order ODEs, IVP, diagnostics for D02LAF |
| D02LZF | 13 | Second-order ODEs, IVP, interpolation for D02LAF |
| D02MVF Example Text |
14 | ODEs, IVP, DASSL method, setup for D02M–N routines |
| D02MZF | 14 | ODEs, IVP, interpolation for D02M–N routines, natural interpolant |
| D02NBF Example Text |
12 | Explicit ODEs, stiff IVP, full Jacobian (comprehensive) |
| D02NCF Example Text |
12 | Explicit ODEs, stiff IVP, banded Jacobian (comprehensive) |
| D02NDF Example Text |
12 | Explicit ODEs, stiff IVP, sparse Jacobian (comprehensive) |
| D02NGF Example Text |
12 | Implicit/algebraic ODEs, stiff IVP, full Jacobian (comprehensive) |
| D02NHF Example Text |
12 | Implicit/algebraic ODEs, stiff IVP, banded Jacobian (comprehensive) |
| D02NJF Example Text |
12 | Implicit/algebraic ODEs, stiff IVP, sparse Jacobian (comprehensive) |
| D02NMF Example Text |
12 | Explicit ODEs, stiff IVP (reverse communication, comprehensive) |
| D02NNF Example Text |
12 | Implicit/algebraic ODEs, stiff IVP (reverse communication, comprehensive) |
| D02NRF | 12 | ODEs, IVP, for use with D02M–N routines, sparse Jacobian, enquiry routine |
| D02NSF | 12 | ODEs, IVP, for use with D02M–N routines, full Jacobian, linear algebra set up |
| D02NTF | 12 | ODEs, IVP, for use with D02M–N routines, banded Jacobian, linear algebra set up |
| D02NUF | 12 | ODEs, IVP, for use with D02M–N routines, sparse Jacobian, linear algebra set up |
| D02NVF | 12 | ODEs, IVP, BDF method, setup for D02M–N routines |
| D02NWF | 12 | ODEs, IVP, Blend method, setup for D02M–N routines |
| D02NXF | 12 | ODEs, IVP, sparse Jacobian, linear algebra diagnostics, for use with D02M–N routines |
| D02NYF | 12 | ODEs, IVP, integrator diagnostics, for use with D02M–N routines |
| D02NZF | 12 | ODEs, IVP, setup for continuation calls to integrator, for use with D02M–N routines |
| D02PCF Example Text |
16 | ODEs, IVP, Runge–Kutta method, integration over range with output |
| D02PDF Example Text |
16 | ODEs, IVP, Runge–Kutta method, integration over one step |
| D02PVF | 16 | ODEs, IVP, setup for D02PCF and D02PDF |
| D02PWF Example Text |
16 | ODEs, IVP, resets end of range for D02PDF |
| D02PXF Example Text |
16 | ODEs, IVP, interpolation for D02PDF |
| D02PYF | 16 | ODEs, IVP, integration diagnostics for D02PCF and D02PDF |
| D02PZF Example Text |
16 | ODEs, IVP, error assessment diagnostics for D02PCF and D02PDF |
| D02QFF Example Text |
13 | ODEs, IVP, Adams method with root-finding (forward communication, comprehensive) |
| D02QGF Example Text |
13 | ODEs, IVP, Adams method with root-finding (reverse communication, comprehensive) |
| D02QWF | 13 | ODEs, IVP, setup for D02QFF and D02QGF |
| D02QXF | 13 | ODEs, IVP, diagnostics for D02QFF and D02QGF |
| D02QYF | 13 | ODEs, IVP, root-finding diagnostics for D02QFF and D02QGF |
| D02QZF Example Text |
13 | ODEs, IVP, interpolation for D02QFF or D02QGF |
| D02RAF Example Text |
8 | ODEs, general nonlinear boundary value problem, finite difference technique with deferred correction, continuation facility |
| D02SAF Example Text |
8 | ODEs, boundary value problem, shooting and matching technique, subject to extra algebraic equations, general parameters to be determined |
| D02TGF Example Text |
8 | nth-order linear ODEs, boundary value problem, collocation and least-squares |
| D02TKF Example Text |
17 | ODEs, general nonlinear boundary value problem, collocation technique |
| D02TVF Example Text |
17 | ODEs, general nonlinear boundary value problem, setup for D02TKF |
| D02TXF Example Text |
17 | ODEs, general nonlinear boundary value problem, continuation facility for D02TKF |
| D02TYF Example Text |
17 | ODEs, general nonlinear boundary value problem, interpolation for D02TKF |
| D02TZF Example Text |
17 | ODEs, general nonlinear boundary value problem, diagnostics for D02TKF |
| D02XJF | 12 | ODEs, IVP, interpolation for D02M–N routines, natural interpolant |
| D02XKF | 12 | ODEs, IVP, interpolation for D02M–N routines, C1 interpolant |
| D02ZAF | 12 | ODEs, IVP, weighted norm of local error estimate for D02M–N routines |